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Focused Heating in Cylindrical Targets: Part I
JAMES R. WAIT, FELLOW, IEEE

Abstract —The analytical basis of a method to focus the electromagnetic
power into a conductive cylinder is described. The scheme, as currently
being used by others, is to locate a number of horn apertures around the
periphery. An explicit expression is obtained for the required excitation of
the apertures for a two-dimensional model.

I. INTRODUCTION

A need exists to localize the power deposition in human limbs
and torsos in cancer therapy. Various applicators in the forms of
loops and horn antennas have been used in selected configura-
tions [1]-[6]. The common objective has been to heat the tumor
while minimizing the damage to the adjacent healthy tissue. By
persistent experimentation, several schemes have been developed
that appear to be effective. On the theoretical side, the effort has
been directed to both analytical and numerical modeling using
idealized model shapes. With a few notable exceptions (e.g., [5]),
the approaches have been rather empirical in that the source
configurations and manner of excitation are assumed rather than
deduced from the desired pattern of the power deposition in the
target.

Our purpose here is to outline a procedure for focusing the
power deposited in a lossy body of cylindrical form using an
array of aperture antennas. For purposes of illustration, we adopt
a two-dimensional cylindrical model. In Part II, we will consider
numerical results and specific examples.

II. THE MODEL

The cylindrical configuration is shown in Fig. 1. The biological
target (i.e., torso or limb) is represented by a homogeneous
cylinder of radius ¢ with conductivity o; and permittivity ;.
With respect to a cylindrical coordinate system (p,,z), the
surface of the target is p=a for —o0 <z <+ 0. At the con-
centric cylindrical surface p =5, we now apply an aperture
electric field E,(p, ¢) polarized in the z-direction. As indicated
below, this aperture illumination is to be implemented by a finite
number N of horn antennas (in Fig. 1, N =38). The annular
region a < p < b is homogeneous with assigned conductivity o,
and permittivity €,. This region can be either free space (o, =
0, €, = ¢,) or de-ionized water (o, = 0, ¢, = 8l¢,). In this study,
we do not consider the TE (transverse electric) polarization
because of difficulties in practical implementation.

I

Our first task is to obtain an expression for the electric field
E (p,¢) at any interior point (i.e., p<b), in terms of the
aperture field E, (b, ¢). We deal with harmonic time dependence
of the form exp(iwt), where w is the angular frequency. Because
the fields satisfy Maxwell’s equation and remembering that d/dz
=0, it is a simple matter to show that
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Fig. 1. Plan view of general scheme showing location of horn aperture anten-
nas around cylindrical target of radius @ with buffer zone of outer radius b.

where
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is the Laplacian operator, and

. . 1/2
v=[ingu (o +icw)] ()
is the complex propagation constant. We add a subscript 1 or 2
to v, o, and € as appropriate. Here, p, is the magnetic permea-
bility that we assume is the free-space value 47 X 10~ 7 throughout.
The corresponding magnetic-field components are then obtained
from

1 JE

P T ipgw pdd Q)
and
1 OJE,
*= Thow 90 - )

Appropriate forms of the solutions [7],[8] for E, and H, in the
various regions are given below. For 0 < p < a, we have

+ o0 )
Ez = Z AmIm(YIP)e_‘m¢

m=—0o0

(6)
and

+ 00 -
H,=y Z AL (np)e '™ (7
m=—00
where 1,,(Z) is the modified Bessel function [9] of argument Z
and I)(Z)=dl,(Z)/dZ and where y, =1, /(ipow)=[(06y+
i€ w)/(ipow)]*/? is the intrinsic admittance of the target region.
A,, 1s a coefficient yet to be determined.
For a < p < b, we have

+ o0
Ez= Z [BmIm(YZP)_’-Cme(‘YZp)]e——”mﬁ

m=—c0

(®)

and
+ 0
Hy=y, Y [B.IL(12p)+CuKp(np)]e™™  (9)
m= -—o0

where K, (Z) is the MacDonald function [9] of argument Z and
K.(Z)=dK, /dZ and where y, = v,/(ipow) = [(o, +
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i€,w)/(ipgw)]*/? is the intrinsic admittance of the buffer region.
B, and C, are coefficients yet to be determined.

The boundary conditions at p = a (i.e., surface of the target)
require that E, and H, arc continuous. Application to (6)—(9)
lead to the following relations:

where
- _ y2Ir:1(72a)—Yl,mIm(72a) (11)
" yzKr'n(‘Yza)_Yl,me(Yza)
where
Y, m=nln(na)/1,(v1a) (12)
and also
A,=B,[1,(na)+R,K,(1,a)]/I,(na). (13)

The remaining unknown coefficient B,, is determined by the
aperture field at p = b. For example, we can write

+ o0
E(b,¢)= XL E, ™ (14)
m=—o0
provided the Fourier transform
E,=— [*"E.(b,)e™ do (15)
27 0

exists. On using (8) and (10) for the left-hand side of (14), it
follows that

Bm[Im(YZb)+ Rme(YZb)] = Em

which is the desired relation between B,, and E,,.

Now clearly if the aperture field (14) is specified at the outset,
we may use (16) and (13) to yield the coefficient A4, for the field
inside the target. To be explicit

(16)

17)
where

fo = I,(r,a)+ R, K, (v,a) )
" L(na)L,(nb)+ R,K,(v:b)]

Thus, on using (6), the field inside the target (ie., p<a) is
expressed in the form

(19)

+ o0

Z me'mIm(-Ylp)e_lmq>

m=—o0

E,(p,¢)= (19)
where E, is the Fourier transform of the aperture field. The
corresponding magnetic-field components H, and H, are ob-
tained from (4) and (5), respectively.

IV. SYNTHESIS

In a formal sense, we may carry out a synthesis by starting
with the premise that the internal field E, at some fixed value of
p(=py) is a prescribed function of ¢. Then we wish to deduce
the aperture field at p = b that is required. In other words, let us
say that

E.(po. %) = g(9) (20)
where g(¢) is specified. Then, in accordance with (19)
+ o0
g(¢) = Z memIm('Ylpo)e—"mb (21)

that is to hold for 0 < ¢ < 2. Then, by Fourier inversion of (21),
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Fig. 2. Geometry for individual aperture of angular width 2o/ N radians and
sketch (to the left) of assumed aperture distribution of electric field.

we have
1 1
E,=—F—+ 22
fmIm(YIPO) 27 ( )

and the corresponding form for E, (b, ¢) is given by (14). Such a
synthesis in terms of the desired ¢ variation is probably of
limited value but it is possible the inverse property could be
exploited at a later date.

foz"g(qb) emtdy

V. FocusiNGg

A more promising approach to the synthesis problem is to
accept the limited goal of tailoring the aperture field to achieve
focusing at some internal point (p, ¢) where p < a. To this end,
we actually break the aperture into N discrete segments such as
depicted in Fig. 1 (where N = 8). We can envisage an individual
segment as a horn aperture [3). Thus, we see that

= _1_ 2 ime _ =
Em'zwfo E,(b,¢)e d¢—n§0Em’" (23)
where
1 ¢, +a/N
E, .=—1|" E,(b,$)emdo. 24a
’ 27 /;”_ﬂ/N (5,4) 4 (242)
By a simple change of variable, we may write
L (N 3 oGt d) g5
Bnu=v5 )" E(b.o+)e db.  (24v)

Here ¢= ¢ — ¢, is the angular distance measured across an
individual horn aperture. We now assume the following distri-
bution of field is the nth horn:

Ez(b’¢n +&) = Ez(&’)Aneian (25)
where A, and 8n are real. In other words, we are saying that the
field distribution E,(¢) is the same in each horn but the magni-
tude and phase differ for each horn. The situation for an individ-
ual horn in depicted in Fig. 2. Now we see that

E, .= —2—-377;Ane‘8" ey, (26)
where
V. =b f_”i j’ E@) emdd. (27)
We are now in the position to write (19) in the form
N-1
E(p,$)= ZOEz,n(p,qb) (28)
n—

where
= —1 ! 3 —im(P—
E, .(p,9) 2ﬂbAnes" S £V L (vp)e o

e (29)
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can be identified as the contribution of the nth aperture to the
field at (p, ¢). We can say that the array of N horn apertures is
focused to the point (p, ¢) when the phase of each contribution

E, , is identical. An equivalent statement is that

+00
8, =—phaseof 3} fV,L(np)e " . (30)
m=-—-
The choice of the amplitude factor A, is still open. The coeffi-
cient f,, is defined by (18) and involves the electrical properties

of the target and the concentric buffer region. In the case where
the latter is absent or vanishing small (i.e., b — a), we see that

fm=[Im(Yla)]_l' (31)
The other key coefficient in (30) is ¥, which depends on the
common field distribution in a given aperture. Assuming that the
horns are excited only by a TEM (transverse electromagnetic)
mode, it is reasonable to assume a cosinusoidal field distribution
at the aperture which vanishes at the side walls. Thus, we may
adopt the form

£, ($) = By-cos( 32 (3)
for the range — % <é< -]% Then, using (27), we see that
= /N N_&’ im$ 17
V. bEOf_ ”Ncos( 2 )e d¢
= bE, cos( m%) —+——
(N/2)"—m?
=bEym/N  form=N/2. (33)

All quantities on the right-hand side of (30) are now specified,
and the phase factors &, may be calculated for any desired point
(p,$). We are still free to select the amplitude factors A, if
additional constraints are made.

VL

There are a number of generalizations and extensions of the
present model that we might mention. The case where the target
(defined by p < a in Fig. 1) is concentrically layered presents no
difficulty in analysis. Here, we can use the present formulation
provided Y; ,, (the surface admittance) of mode of order m at
p=a is replaced by the appropriate form for the equivalent
nonuniform transmission line [8]. Another extension is to allow
explicity for the limited axial extent (in the z-direction) of the
apertures and to include the axial variation of the fields [8],[10].
Now we must allow for the intrinsic hybrid nature of the fields
because the TE (transverse electric) and TM (transverse mag-
netic) modes are coupled [8]. At the same time, both the axial and
the azimuthal (ie, z and ¢, respectively) variations of the
aperture fields can be accounted for. In a further extension, we
can consider the influence of the finite length of the cylindrical
target by imposing a zero axial current flow condition at the
bounding planes (top and bottom) [11].

There is another interesting concept that we might also men-
tion in the present context. In order to “focus” the array, we

FINAL REMARKS

adopted a procedure whereby the fields of the individual aper- -

tures were selected to have a phase such that all contributions at
the internal field point were additive. Now we could have turned
the problem around and started with a hypothetic electric line
source at the internal point and deduce the corresponding re-
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ceived signal in each aperture. This would lead to an alternative
but equivalent procedure to deduce the phase angles 8, needed to
design the focused aperture. This latter approach could be adapted
to more complicated target geometries where purely numerical
methods would be required to solve the electromagnetic problem.
However, in the interim, it would seem prudent to restrict atten-
tion to analytically viable models if insight and understanding are
desired. We are currently undertaking such a study and the
results will be reported in Part II.
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Convergence of Local and Average Values in
Three-Dimensional Moment-Method Solutions

MARK J. HAGMANN, MEMBER, IEEE, AND RONALD L. LEVIN

Abstract —Block models using 8, 64, 216, 512, 1000, 1728, and 2744
cubical cells were used to evaluate the local and average specific absorption
rate (SAR) for a dielectric cube irradiated by an EM plane wave. All seven
models were used in examples for 0.5-cm and 2.5-cm saline cubes at 400
MHz and a 30-cm cube of biological tissue at 27.12 MHz. In each
example, the solutions using 8 or 64 cells were similar to that for a sphere
rather than a cube. Many cells are needed to approximate the sharp
variation of the electric field near corners and edges of a dielectric cube.

The heterogeneity of the electric field in an object having corners and
edges causes a frequency-independent error (FIE) in addition to the more
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